Skip to contents

The enaR library can be used to perform the Flow Analysis of Ecological Network Analysis. This includes finding the node throughflows, calculating the Input and Output analyses, and determining a set of whole-network metrics.

Load the data

# load a model
data(enaModels)
m <- enaModels[[9]] # select the oyster reef model

Perform the analysis

f <- enaFlow(m)  # peform the ENA flow analysis
attributes(f)
#> $names
#> [1] "T"   "G"   "GP"  "N"   "NP"  "TCC" "TDC" "ns"
show(f$N)  # integral output-oriented flow intensity
#>                    Filter Feeders Microbiota Meiofauna Deposit Feeders
#> Filter Feeders                  1  0.1970605 0.2044972      0.06052568
#> Microbiota                      0  1.1018630 0.2532824      0.19036255
#> Meiofauna                       0  0.2862988 1.2971032      0.16586629
#> Deposit Feeders                 0  0.4039454 0.4191895      1.12406883
#> Predators                       0  0.2424763 0.2516269      0.07447480
#> Deposited Detritus              0  0.5096313 0.5288639      0.15652949
#>                     Predators Deposited Detritus
#> Filter Feeders     0.01653243          0.5368966
#> Microbiota         0.01305235          0.2775284
#> Meiofauna          0.01137274          0.7800287
#> Deposit Feeders    0.07707261          1.1005597
#> Predators          1.00510642          0.6606330
#> Deposited Detritus 0.01073256          1.3885039

show(f$ns) # vector of flow-based network statisics
#>      Boundary     TST     TSTp      APL       FCI       BFI       DFI       IFI
#> [1,]    41.47 83.5833 125.0533 2.015512 0.1101686 0.4961517 0.1950689 0.3087794
#>          ID.F   ID.F.I   ID.F.O    HMG.I    HMG.O AMP.I AMP.O mode0.F  mode1.F
#> [1,] 1.582925 1.716607 1.534181 2.051826 1.891638     3     1   41.47 32.90504
#>       mode2.F  mode3.F mode4.F
#> [1,] 9.208256 32.90504   41.47

Ascendency Metrics

The ascendancy metrics proposed by Dr. Ulanowicz are also most often applied to the network flow distributions. In enaR this is done as follows.

a <- enaAscendency(m)  # calculate the Ascendnecy metrics
show(a)
#>             H      AMI       Hr      CAP      ASC       OH   ASC.CAP    OH.CAP
#> [1,] 3.018275 1.330211 1.688063 377.4452 166.3473 211.0979 0.4407191 0.5592809
#>      robustness     ELD       TD  A.input A.internal A.export A.respiration
#> [1,]  0.3611021 1.79506 2.514395 66.03696   72.62476        0      27.68558
#>      OH.input OH.internal OH.export OH.respiration CAP.input CAP.internal
#> [1,]        0    103.2914         0       107.8065  66.03696     175.9162
#>      CAP.export CAP.respiration
#> [1,]          0         135.492